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A Comprehensive Review of SDG 
Methods in Biomedicine
As part of the SYNTHIA project, a scoping review was conducted to assess the state of the art, identify key challenges and opportunities, and define a shared 
understanding of SDG to guide future development. The review followed a structured methodology, focusing on high-impact publications and preprints from the 
past 5–10 years across databases including PubMed, Scopus, Web of Science, IEEE Xplore, and arXiv.

Figure 1. Targeted Synthetic Data Applications. SYNTHIA delivers purpose-built 
synthetic datasets and tools to meet specific clinical and research needs in real-world 
healthcare settings.
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Funded by the Innovative Health Initiative (IHI), 
SYNTHIA is a public-private partnership advancing 
synthetic data generation (SDG) for biomedicine. It 
develops tools to tackle data scarcity and privacy, 
generating tabular, imaging, sequencing data and 
more across six disease areas: lung cancer, breast 
cancer, multiple myeloma, DLBCL, Alzheimer’s, 
and Type 2 diabetes (Fig. 1). Outputs will be 
delivered via a federated platform to support 
research and innovation.

Approach Strengths Limitations
Statistical Simple, interpretable Privacy, scalability, limited dynamics
Machine learning Flexible, powerful Complex, compute-heavy, training risks
Simulations Domain-grounded, efficient Less adaptable, lower variability
Statistical methods

● KDE: Non-parametric, replicates distributions; limited privacy, high compute.
● Gaussian Copulas: Capture multivariate dependencies; struggle with scale/privacy.
● Mixture Models (e.g., GMMs): Model heterogeneity; newer versions handle mixed data.
● Bayesian Networks: Encode dependencies; some support private variants.
● Oversampling (SMOTE/ADASYN): Balance classes; simple but privacy-limited.

Machine learning methods
● NODEs / ANODEs: Model latent continuous-time dynamics; great for irregular time-series.
● Neural Laplace: Laplace-enhanced NODEs; better for sparse time points.
● GNNs: Learn on graph data; with variants for relational health data.
● VAEs: Probabilistic encoding; some handle missing/mixed data and temporal modeling.
● GANs: Realistic outputs via adversarial learning; unstable, mode collapse risk.
● DDPMs: Probabilistic noise-based generation; high-quality, but slow.
● LLMs (e.g., GPTs): Emerging for tabular/text; expressive but with privacy/ethics concerns.

Simulative methods
● Imaging-Based: Embed clinical features in clean images; efficient and realistic.
● Physics/Chemistry Models: Simulate interactions (e.g., contrast imaging).
● Rule-Based Simulators (e.g., Synthea): Generate synthetic EHRs from clinical rules.

Overview of common SDG approaches SDG methods by data modality

CONCLUSIONS

Textual data
Synthetic medical text is generated using LLMs like 
GPT-4 and transformer-based frameworks such as 
MedSyn [1], which integrates Medical Knowledge 
Graphs, improving NLP tasks like ICD coding, NER, and 
de-identification. Tools like DeID-GPT automate removal 
of private information, enabling realistic, privacy-safe 
clinical text generation for research and clinical use.

Tabular data
Synthetic tabular data in healthcare is generated using 
classical statistical methods like GMMs, Copulas, and 
KDE, as well as machine learning techniques including 
decision trees (e.g., Randomized Decision Trees [2]), 
GANs (e.g., MedGAN [3], CTGAN [4]), VAEs (e.g., 
TVAE [4], TabVAE [5]), diffusion models (e.g., TabDDPM 
[6], TabSyn [7]), and LLMs (e.g., GReaT [8]). These 
methods address challenges like mixed data types, 
privacy, and complex dependencies, supporting 
applications from clinical trials to precision medicine.

Imaging data
Medical imaging data synthesis leverages tools like 
GANs, diffusion models, and hybrid approaches (e.g., 
HA-GAN [9]) to generate anatomically accurate and 
scalable synthetic images while addressing data scarcity 
and privacy concerns. Additionally, vision-language 
models such as MedViLL [10] and Flamingo-CXR [11] 
enable automated generation of clinically relevant 
radiology reports, improving workflow efficiency and 
diagnostic support.

Times series data
Synthetic signaling and time-series data generation 
utilizes advanced tools like VAMBN [12] and VAMBN-MT 
[13] for capturing complex temporal and multimodal 
dependencies, as well as MultiNODEs [14] for modeling 
continuous trajectories in latent space. For biomedical 
signals such as EEG and ECG, GAN variants (e.g., 
CGANs [15], RGANs [16]), DDPMs [17], SynSigGAN 
[18], and DoppelGANger [19] are employed to create 
realistic, high-fidelity synthetic data reflecting temporal 
dynamics and signal complexity.

Sequencing data
Synthetic sequencing data is generated using a 
variety of tools that range from basic short-read 
simulators to advanced models incorporating real 
sequencing error profiles and genomic features, 
enabling controlled benchmarking and testing of 
bioinformatics workflows. Recent developments 
include large language models like Evo [20], 
GenSLMs [21], and xTrimoPGLM-100B [22], which 
enhance sequence generation and functional 
prediction.

Spatial data
Spatial transcriptomics (ST) maps gene expression 
within tissue context, aiding cancer research and 
diagnostics. Synthetic ST uses computational 
models to generate realistic spatial datasets for 
method testing and data augmentation. Tools like 
scDesign3 [23] help simulate tissue structure and 
gene activity for improved analysis development.

Multimodal data
Multimodal synthetic data generation in 
healthcare leverages advanced AI 
techniques to integrate diverse data 
types, such as tabular, imaging, 
time-series, and omics, within unified 
frameworks. Methods include, 
transformer-based architectures, hybrid 
models, multimodal GANs, and 
diffusion models, which learn complex 
cross-modal dependencies.
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