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The IHI SYNTHIA project

Create privacy-preserved ®
datasets

Synthetic Data Generation framework for integrated validation of use cases and

Funded by the Innovative Health Initiative (IHI),
SYNTHIA is a public-private partnership advancing Otheruses
synthetic data generation (SDG) for biomedicine. It
develops tools to tackle data scarcity and privacy,
generating tabular, imaging, sequencing data and
more across six disease areas: lung cancer, breast  resustorue

cancer, multiple myeloma, DLBCL, Alzheimer’s,
and Type 2 diabetes (Fig. 7). Outputs will be

Al healthcare applications.
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As part of the SYNTHIA project, a scoping review was conducted to assess the state of the art, identify key challenges and opportunities, and define a shared
understanding of SDG to guide future development. The review followed a structured methodology, focusing on high-impact publications and preprints from the
past 5-10 years across databases including PubMed, Scopus, Web of Science, IEEE Xplore, and arXiv.

Overview of common SDG approaches SDG methods by data modality
Approach Strengths Limitations
Statistica Simple, interpretable Privacy, scalability, limited dynamics Textual data

_ _ , L Synthetic medical text is generated using LLMs like
Machine learning  Flexible, powertful Complex, compute-heavy, training risks GPT-4 and transformer-based frameworks such as

Simulations Domain-grounded, efficient Less adaptable, lower variability MedSyn [1], which integrates Medical Knowledge
Graphs, improving NLP tasks like ICD coding, NER, and
de-identification. Tools like DelD-GPT automate removal
of private information, enabling realistic, privacy-safe
clinical text generation for research and clinical use.

Statistical methods
e KDE: Non-parametric, replicates distributions; limited privacy, high compute.
e Gaussian Copulas: Capture multivariate dependencies; struggle with scale/privacy.
e Mixture Models (e.g., GMMs): Model heterogeneity; newer versions handle mixed data.
e Bayesian Networks: Encode dependencies; some support private variants.
e Oversampling (SMOTE/ADASYN): Balance classes; simple but privacy-limited.
Machine learning methods
e NODEs / ANODEs: Model latent continuous-time dynamics; great for irregular time-series.
e Neural Laplace: Laplace-enhanced NODEs; better for sparse time points.
e GNNs: Learn on graph data; with variants for relational health data.
e VAEs: Probabilistic encoding; some handle missing/mixed data and temporal modeling.
e GANSs: Realistic outputs via adversarial learning; unstable, mode collapse risk.
e DDPMs: Probabilistic noise-based generation; high-quality, but slow.
e LLMs (e.g., GPTs): Emerging for tabular/text; expressive but with privacy/ethics concerns.
Simulative methods
¢ Imaging-Based: Embed clinical features in clean images; efficient and realistic.
e Physics/Chemistry Models: Simulate interactions (e.g., contrast imaging).
e Rule-Based Simulators (e.g., Synthea): Generate synthetic EHRs from clinical rules.

Tabular data

Synthetic tabular data in healthcare is generated using
classical statistical methods like GMMs, Copulas, and
KDE, as well as machine learning techniques including
decision trees (e.g., Randomized Decision Trees [2]),
GANs (e.g., MedGAN [3], CTGAN [4]), VAEs (e.q.,
TVAE [4], TabVAE [5]), diffusion models (e.g., TabDDPM
[6], TabSyn [7]), and LLMs (e.g., GReaT [8]). These
methods address challenges like mixed data types,
privacy, and complex dependencies, supporting
applications from clinical trials to precision medicine.

Imaging data
Medical imaging data synthesis leverages tools like

Multimodal data Sequencing data GANs, diffusion models, and hybrid approaches (e.g.,
Multimodal synthetic data generation in Synthetic sequencing data is generated using a HA-GAN [9]) to generate anatomically accurate and
healthcare leverages advanced Al variety of tools that range from basic short-read scalable synthetic images while addressing data scarcity
techniques to integrate diverse data simulators to advanced models incorporating real and privacy concerns. Additionally, vision-language
types, such as tabular, Imaging, sequencing error profiles and genomic features, models such as MedViLL [10] and Flamingo-CXR [11]
time-series, and omics, within unified enabling controlled benchmarking and testing of  enable automated generation of clinically relevant
frameworks. Methods include, bioinformatics workflows. Recent developments  radiology reports, improving workflow efficiency and
transformer-based architectures, hybrid include large language models like Evo [20], diagnostic support.
models, multimodal GANs, and GenSLMs [21], and xTrimoPGLM-100B [22], which
diffusion models, which learn complex enhance sequence generation and functional Times series data
cross-modal dependencies. prediction. Synthetic signaling and time-series data generation

utilizes advanced tools like VAMBN [12] and VAMBN-MT
CONCLUSIONS Spatial data [13] for capturing complex temporal and multimodal
Ensuring data quality, clinical Spatial transcriptomics (ST) maps gene expression dependencies, as well as MultiNODEs [14] for modeling
relevance, and minimizing bias requires within tissue context, aiding cancer research and continuous trajectories in latent space. For biomedical
robust assessment, benchmarking diagnostics. Synthetic ST uses computational signals such as EEG and ECG, GAN variants (e.g.,

and FAIR principles. The evolving models to generate realistic spatial datasets for CGANs [15], RGANs [16]), DDPMs [17], SynSigGAN
regulatory landscape (e.g., GDPR, method testing and data augmentation. Tools like [18], and DoppelGANger [19] are employed to create

HIPAA) calls for clear legal and ethical scDesign3 [23] help simulate tissue structure and realistic, high-fidelity synthetic data reflecting temporal
guidance. Future efforts must focus on gene activity for improved analysis development. dynamics and signal complexity.

standardized evaluation metrics,

stronger privacy protections, and — jumesgow oo o smasso Dot e S e oo 2 € Dy e 2
expert-in-the-loop  validation to  GatSemeenabadis wm s R aaeor DT Sotron i e e 208 e e ems o s i o e v s 20284228752

[5] Tazwar S, Knobbout M, Quesada E, et al. Proc ICPRAM. 2024. [12] Gootjes-Dreesbach L, Sood M, Sahay A, et al. Front Big Data. 2020;3:16. [18] Hazra D, Byun Y-C. Biology (Basel). 2020;9.
[19] Lin Z, Jain A, Wang C, et al. Proc ACM IMC. 2020.

- - i [6] Kotelnikov A, B huk D, Rubachev |, et al. arXiv. 2022. [13] Kuhnel L, Schneider J, P [, etal. Sci Rep. 2024;14:14412.
ensure real-world clinical utility. 71 Zhang . 2nang 3, Sivasan B. o1 6. 2025, el Scmeder 1 Prtar | ta. S Rep



